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Abstract—Conditions are established ensuring the continuous dependence on the initial data of the equilibrium
solution and certain other classes of solution to the elastodynamic initial boundary value problem. The method
of proof depends upon logarithmic convexity arguments and is notable for the absence of any definiteness con-
dition on the elasticities. In some cases the conclusions reached differ from corresponding ones derived according
to classical Lyapounov stability theory and examples are given to illustrate this difference.

1. INTRODUCTION

THIs paper examines the stability of equilibrium solutions to problems in linear elasticity
according to an extended Lyapounov definition. Instead, however, of investigating stability
by the customary procedure known as Lyapounov’s second method, we adopt an entirely
different technique based on convexity arguments. These are currently of wide use in the
allied field of non-well posed problems (see, e.g., Payne [9] and the references there cited)
and in the present context lead to conditions stabilizing an otherwise unstable solution.
Put differently, they lead to conditions ensuring that the problem becomes well posed.
Thus, we are able to prove that equilibrium solutions are always stable provided the per-
turbations lie in a suitable class of uniformly bounded functions and provided also that
the elasticities satisfy a particular symmetry. No other restriction need be imposed on the
elasticities. This fact is all the more remarkable since without such boundedness conditions
a non-positive-definite strain energy alone is sufficient to produce asymptotic instability.
Of course, when the strain energy is positive-definite our conclusions merely repeat some
of those already known in the literature.

It should be remarked that although we are concerned only with the question of stability
of the equilibrium solution under dynamical perturbations, in this paper we actually
establish continuous dependence on the initial data for solutions of certain classes of
initial-boundary value problems of dynamical elasticity. This means that our results apply
equally well for perturbations from any given dynamical state and not merely for pertur-
bations about equilibrium.

Unless stated otherwise stability in this paper is defined in a slightly more general sense
than is usual in the majority of treatments. We take the period of investigation to be a
half-open finite time interval and not a closed interval as in the classical definition. We shall
see that many solutions which might be classified as unstable in the usual sense will be
considered stable according to the definition used in this paper.
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Our conclusions appear at first glance to contradict a recent theorem of Gilbert and
Knops [1] asserting the equivalence of stability and boundedness (when these terms are
properly defined). However, this disagreement is easily resolved.

Throughout, we refer all equations to cartesian coordinates x;, and we adopt the con-
vention of summing over repeated suffixes whose values are 1, 2 and 3. A classical solution
is always assumed to exist although the following results could be extended in a straight-
forward manner to include certain generalized solutions.

2. BASIC EQUATIONS AND STABILITY CONCEPTS

We consider a linear elastic solid occupying a closed regular three-dimensional region
of euclidean space B bounded by a smooth surface dB. Because of linearity we need con-
sider only the stability of the null solution of the homogeneous equations

6 6uk ﬁzu,- .
5_xj {cijklaxl } =P 212 in Bx{(0, T], (2.1)
Cijki = Criij» (2.2)

subject to the boundary conditions
;=0 on ¢B,x[0,T],

Ju
Cijkzé‘x—l;nj=0 on éB,x[0,T)]

(2.3

where 0B, and 0B, are disjoint subsets of B such that 0B = 6_B: w 0B,. The closure of
0B, is denoted by 0B, the closed time interval of length T'is [0, T], and the cartesian product
of the sets B and [0, T} is denoted by B x [0, T]. In addition, u; denotes the cartesian com-
ponents of displacement, ¢ is the time variable, n; are the cartesian components of the
outward normal on 0B,, p is the non-homogeneous density, assumed positive, and ¢;;,
are the non-homogeneous elasticities. To avoid a clumsy notation we display here for the
only time the dependence of the above quantities upon their arguments’

u; = ufx, 1), p = p(x), Cijut = CiraX)- (2.4
Observe that because (2.2) is the only symmetry imposed on the elasticities the subsequent
calculations remain valid in the theory of small elastic deformations superposed upon
large. Also, even though (2.3) are the only boundary conditions discussed other standard
types could be equally included.
The prescription of initial conditions more appropriately forms part of our

Definition of stability. The null solution is stable under perturbations u; satisfying
(2.1)(2.3) if for any ¢ > O there exists a d(¢) > O such that

|: J‘pu,-u,-dvﬁ-Q:I < d (2.5)
B(0)

implies

sup [ qu,-u,- dv+Q] <& (2.6)

0<t<T
B(t)
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Here, B(t) denotes integration over the volume of the body at time ¢, while Q is an appro-
priately chosen positive functional of the initial data which tends to zero as the initial data
tends to zero. Its precise form will be specified later. We say that a solution is unstable
when it is not stable.

In this definition, the period of investigation is the half-open time interval of finite
length 7. If instead, the closed interval of length T had been taken in (2.6), then the definition
would have reduced to a version of Movchan’s [7] generalization of the classical definition
due to Lyapounov. We shall see by means of an example that our conclusions are highly
sensitive to the choice in (2.6) of the half-open or closed time interval.

3. STABILITY ANALYSIS
We now employ convexity arguments to prove:
THEOREM 3.1. For the system of equations (2.1}~(2.3) the null solution is stable provided

the perturbations satisfy the uniform boundedness condition

f puu; dv < M? (3.1

B(t)

Jor some positive bounded constant M.
Proof. Consider the function G(t) defined by

G(t) = log[F(t)+ Q] +¢2, (3.2)
where
F(t) = f puu; do. (3.3)
B(1)

We shall establish the convexity of G(t) on [0, T]; that is, we shall prove that

2 2F dF 2
(F+0Q)? G_(F+Q)i?—(§) +2(F+Q)*>0,0<:<T (34
Now,
dF ou;
i 2 J puiadv
B(n)
and

du; au 0%u;
_2f( R ‘6t2)dv
B(1)

which, with the help of (2.1)+2.3), may be written

2
d’F J‘ ( du; Ou; du; 0uk) (35)

d? Par ot~ “Max, ox,
B(1)
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Since the energy E(t), defined as

du; 6u ou; Ouy

E(t) = PR .

) = 2,! )( @ ar gy, 6x,) dv, (3.6)
(t

is time-independent (i.e. E(0) = E(t)), we may use Schwarz’s inequality to obtain

d*F (dF 2

(F+Q)Et7" N

—4E(0)[F+Q]+40 f p% % v> —2F+Q)* (3.7

B(1)

provided Q is chosen to satisfy @ = 2E(0). Thus (3.4) is established. Let us choose, in
particular,
Q = 2 max [E(0), 0] (3.8)

and note that for a positive initial energy tending to zero then Q — 0. From the convexity
of G(t) it immediately follows that

G(t) < (¢/T)G(T)+(1—¢/T)G(O), O0<t<T
ie.
F)+Q < e T O[FT)+ Q1 [FO)+Q)' """, 0<:<T. (3.9)

Since all terms on the right of (3.9) remain bounded it follows that for 0 <t < T
arbitrarily small values of F(0)+ Q imply arbitrarily small values of F(t)+ Q; the theorem is
thus proved.

Notice that (3.9) fails to predict either the stability or instability of the null solution in
the closed interval in the sense that F(0)+Q — 0 does not imply sup F(t)+Q — 0. In
fact at t = T(3.9) reduces to an identity. Ose<T

A special case of Theorem 3.1 has been found previously by Zorski [13], Slobokin {12]
and Knops and Wilkes [5]* for the displacement boundary value problem provided the
equilibrium equations corresponding to (2.1) are strongly elliptic, or alternatively, that the
strain energy is positive definite. Then, however, stability of the null solution may be
established on the semi-infinite time interval and without the boundedness assumption
(3.1). These conclusions may be understood by observing that the cited authors establish
the relations

F(t) < kE(@) = kE©©), 0<t< o (3.10)

for positive constant k. Thus, (3.1) is automatically satisfied and stability according to our
definition follows from (3.9); in fact (3.10) shows that we may use the closed time interval
in the definition. However, in this instance, convexity arguments are redundant since (3.10)
already constitutes an adequate means of establishing stability on the semi-infinite time
interval with respect to the measures E(0) and F(t).

Let us note that (3.9) forms the basis of a uniqueness theorem in linear elastodynamics
due to Knops and Payne [4].

We now examine more carefully the relationship between the stability results of this
paper and the more standard concepts of stability. For this purpose we introduce the
appropriate form of a recent theorem of Gilbert and Knops [1] relating stability and

* Shield’s [10] discussion of stability concerns measures different to those used here.
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boundedness:

THEOREM 3.2. Consider a class of solutions u; of (2.1}+2.3) which belong to some linear
vector space V. For elements of this class the following statements are equivalent :
(i) for any & > O there exists a 8(s) > 0 such that

f puu;dv < 6 = sup puu; dv < ¢,
0<t<T
B(0) B(n)
and
(1) the condition

f puu;dv < 1= sup f puu;dv < A

0<t<T
B(0) B(t)

where A is a finite positive constant. The first case is a special case of our stability definition

in which Q = 0.

Clearly then if E(0) < 0 we may take @ = 0 in Theorem 3.1 and, provided we restrict
our consideration to perturbations satisfying (3.1), it follows that Theorem 3.1 is equivalent
to case (i). On the other hand one obtains from a series expansion of log F(t), using the
fact that for E(0) < 0,

d2
gz log FIO] =0,

the inequality

F(t) > F(0)elF©@/FON, (3.11)

Clearly without further restrictions on the c;, p, or the initial data (3.11) indicates that
(ii) cannot be guaranteed. A specific example illustrating this point more clearly will be
given presently. What we have shown is that if E(0) < Q (i) does not imply (ii) and we have
an apparent contradiction to Theorem 3.2. There is, of course, an obvious answer to this
contradiction, for if we require that all admissible perturbations satisfy (3.1) then the class
of admissible solutions does not form a linear vector space. For clearly if u; belongs to the
admissible class it does not follow that au; must belong to the class (for every real constant
o) nor that the sum of two admissible perturbations must be admissible.

We illustrate these remarks by giving a simple example which however is first used to
show the significance of the half-open time interval in our stability definition. We suppose
that there exists a positive constant ¢, such that

—CijuCijCu = colijCijo (3.12)

for all non-vanishing tensors ¢;;. It is shown in the appendix that condition (3.12) is sufficient
for instability of the null solution on the semi-infinite time interval whereas Theorem 3.1
states that if the perturbations are required to satisfy (3.1) then stability is insured in the
half-open time interval. Now under mild conditions on the elasticities, it is known that
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with (3.12) satisfied there exist eigenvectors wi(x) with eigenvalues A, satisfying

é ow;,
{c wk}—}tﬁpw? =0 inB,

@—xj 'ijkl‘a’;l
wt=0  ondB,, (3.13)
owy
Cijklavx:( I’l] = 0 on aBz,

(see, e.g. Gould [2]). It also follows from standard arguments that 2, — oo as n — co. This
fact clearly implies instability since for any n the vector

A=l n g At

uj(x,t) = 4, wie

is a solution of (2.1)+2.3). By taking n sufficiently large the initial data can be made
arbitrarily small but the solution for subsequent ¢ will not depend continuously on the data
in the sup, L,, or energy norm.

Let us, however, consider the set of orthonormalized eigenvectors w}, i.e.

Jpw?wf" dv = O, (3.14)
B
where §,,, is the Kronecker delta. Clearly, the function
ul(x, 1) = wie” #(T=0

satisfies (2.1}2.3) and is bounded in the sense of (3.1). It follows from (3.13) that the total
energy E(0) vanishes and hence that Q may be taken as zero. Thus

— . A— 22T~

F(t) = f puiuldv = e

B(r)
or

sup f puiul dp = ¢~ 24T =T0),
0<t<T(<T

B(t)

Since
F(0) = e 24T

it follows that as F(0) —» 0, (i.e. 4, = oo) then for 0 <t < T; < T, F(t) also tends to zero.
In other words the null solution is stable in the half-open time interval. Note, however, that

F(T)=1

and hence the solution is not stable in the closed interval [0, T'] if we use as our measure
of stability

sup fpu{‘u? dv,
0=<t<T
B()

since F(0) — 0 does not imply F(t)— Oforallte[0, T).
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We observe further that any function u! of the form uf(x, t) = B,wle** with arbitrary
real constant B, is also a solution of (2.1}2.3) for which

F(t) = F(0)e**". (3.15)

Thus the condition F(0) < 1 certainly does not imply F(f) < 4 in any fixed open time
interval since by choosing A, large enough the right hand side may be made arbitrarily
large. This illustrates the remarks made following (3.11).
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APPENDIX

To complete the analysis of this paper we derive by means of a priori inequalities
conditions sufficient to ensure the instability of the null solution of (2.1)~(2.3) on the semi-
infinite time interval. The following calculations show that for a negative-definite or
indefinite strain energy certain classes of solutions must become unbounded with time.
Instability of the null solution may then be deduced immediately.*+

Hence, let us first assume that

_f CiiubiiCu dv = ¢ f §iigidvo (A1)
B(r) B(t)

for some positive constant ¢, and non-vanishing tensor &;;, and let us consider the function

F(t) = f puu; do. (A2)

B(t)

* That a negative-definite strain energy is sufficient for instability of the null solution in a certain sense has
been discussed by Kelvin [3], Koiter [6] and Movchan [8].

t A paper by Caughey Shield [11] has just come to the authors’ attention in which inequalities are derived
similar to those of this appendix.



1240 R. J, Knops and L. E. PAYNE

Then, we have

d?F du; du; du; duy du; Ou;
bl i S S . 2 Ot O g
a =2 f [” ot ot Mox, ax,] dv = 260 f)”ax,. ax, (A3)
B(t) B(t

or

dv (Ad)

where (A4) is obtained from Poincaré’s inequality, and 4, is the lowest eigenvalue of the
corresponding membrane problem. In the case when the tractions are zero everywhere on
the surface B, we adjoin the normalization

fu,- do = 0. (AS)

B(t)

On writing k% = CoA1/Pmax» WE see that (Ad) leads to
g o

2 Ou;
f puu; do > ;sinb Kt J pu,ma% dv+cosh xt f puu; do. (A6)

B(1) B(»Y B{O)

Now let us examine those solutions whose initial displacement and velocity are such that
the first integral on the right of {A6) is positive. Then, (A6) shows that these solutions have
at least exponential time growth, from which it follows that the nuil solution is unstable;
for if

Ju.
f puu; dv + f puigut—‘ dv < 6 (A7)

B(0) B(0)

for any ¢ > 0 it is always possible to choose ¢ so large that

J pu.do > ¢ (A8)
B(t)

for any prescribed e.
Next let us consider the case in which the strain energy expression is indefinite. How-
ever, let us restrict attention to the class of smooth initial data satisfying

f azui azuk

e LW
WM ox 0t dx,0t
B(0)

dv <0 (A9)

and
ui(x,0) = 0. (A10)
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Then, for the function F(t} defined in (A2) we have,

1 Ju; Ou; du; Cuy
=2 1 dvd
fJ-[pﬁn an “Max, ox ] !
0 B

t
Ou; Ou; du; du;
=4f jpa an — dvdy—-2t J- pﬁﬁdv (A11)

0 B(1) B(0)

where (A10) and the time independence of the total energy have been used. Now because

ult) = fg% dn (A12)
0

we may use Schwarz’s inequality to obtain

' du. du
J puu;do < tf f p{i' éli'du dn (A13)
on on
B(1t) 0 B(®)
and thus with (A11) derive
dF u; Oy,
— >4 'F- th — du,
dt Et ot v
B(0)

or

F—tzf )O—If—iu— v

d it Ot
Ei?[ 20 = } > 0. (A14)

An integration then gives

du;
F>¢ f il
Pt

B(0)

Fog? j Ju; Ou;
- - ——dt
Pt ot
tdl +t* lim 2O) . (A15)

=0 t*

Under suitable smoothness assumptions on u;, I'Hépital’s rule in conjunction with (A1)
shows that the limit term in (A15) may be replaced by

ﬁ Uy
3 j ”“E’x 0[ (7xlrtdv’ (A16)
B(0)

and hence on recalling (A9), we see that inequality (A15) yields

ou: R
Fxt? f 0 ey (A17)
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Thus, those solutions with arbitrarily small initial kinetic energy and satisfying (A10)
have a displacement whose mean square integral has at least a parabolic growth in time.
This shows that the null solution is unstable in an obvious sense.

Finally, let us observe that (A17) is the best possibie result within the stated class of
displacements. This assertion is proved by taking the elasticities to vanish on the surface
and putting

w = &t (A18)

I 1

for arbitrary constants ¢;. The displacement (A18) satisfies equation (2.1) and condition
(A10), and is thus within the required class, while at the same time the boundary condition
(2.3) is satisfied identically (we assume 0B = 0B,). On the other hand,
Ou; Ou;
F(t) = fpuiuidL’ = t? f peg;dv = t? ro 5 At

B B B(0)

Thus, for (A18) the inequality (A17) becomes an equality.

(Received 21 March 1968)

AGcTpakT—/arOTCH  yCoBHs, 00€CnevMBaOlIHE HENPEPHIBHYIO 3aBUCMMOCTh HAYallbHOrO 3HaYEHUS
PELICHUsT PABHOBECUS M HEKOTODBIX APYTMX KJIacCOB PEILEHHs MO OTHOLICHHIO K YIPYTOAWHAMHYECKOH
HavaJBHOM Kkpaedil 3aaa4e. MeToa UCHBITAHHA 3ABHCHT OT J0TapuMUYecKOH BBIMYKIOCTH APryMEHTOB
M 3aMETHBIA OTCYCTBHEM HHKAKOTO HEONPEREIEHHOTO YCIOBHMA ynpyrocrtei. s HMEKOTODHIX CllydaeB,
MONYYECHHBIE pe3y/IbTaThl OTJIHYAKOTCS OT COOTBETCTBYIOUIMX PE3Y/LTATOB, BBITEKAIOIIMX U3 KJIACCHYECKOM
TEOPHH yCTOHYMBOCTH JIsinyHoBa. J[atoTcs NPHUMEDHI HIUTIOCTPUPOIAIOIINE ITY Pa3HHULY.



